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Automatic control and tracking of periodic orbits in chaotic systems
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Based on an automatic feedback adjustment of an additional parameter of a dynamical system, we propose
a strategy for controlling periodic orbits of desired periods in chaotic dynamics and tracking them toward the
set of unstable periodic orbits embedded within the original chaotic attractor. The method does not require
information on the system to be controlled, nor on any reference states for the targets, and it overcomes some
of the difficulties encountered by other techniques. Assessments of the method’s effectiveness and robustness
are given by means of the application of the technique to the stabilization of unstable periodic orbits in both

discrete- and continuous-time systems.
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I. INTRODUCTION

Control of chaos refers to a process wherein a judiciously
chosen perturbation is applied to a chaotic system in order to
realize desirable (chaotic or periodic) behavior. Since the
seminal contribution by Ott, Grebogi, and Yorke (OGY) in
1990 [1], this concept of harnessing chaotic behavior has
been variously developed and found a huge number of appli-
cations [2].

The two most widely used approaches to realize such a
process are the OGY-based techniques and the methods
based on time-delayed feedback control (DFC) [3]. While
the OGY-based methods stabilize unstable periodic orbits
(UPOs) embedded within the chaotic attractor using small
time-dependent perturbations of some accessible control pa-
rameters, they in general require a reconstruction of the para-
metrical variations in the UPOs’ stable and unstable mani-
folds in some section of the flow, which might make difficult
their real-time experimental applications to fast dynamical
systems. On the other hand, the DFC-based methods and
their extensions [4—6] use a direct time-delayed feedback on
an accessible system’s variable. However, they need to tune
principal parameters, such as the feedback gain and the delay
time, in advance.

In this paper, we devise a technique to control chaotic
behavior into a desired periodic one, which is able to over-
come both such difficulties. The method adaptively modifies
the so-called constant-feedback (CF) method [7], which
makes use of an additional parameter to create new dynamics
in the original system and stabilizes periodic orbits (POs) in
the new dynamics. The CF method, indeed, shares with OGY
and DFC methods the great advantage that no a priori infor-
mation on the original system is required and has been
widely applied [8,9].

The proposed technique tunes adaptively and automati-
cally the CF’s additional parameter, and therefore it has an
advantage over the standard CF method in that not even
knowledge of the additional bifurcation analysis with respect
to the new parameter is required [10]. An adaptive-feedback
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scheme for control of chaotic systems has gathered attention
recently [11,12].

II. CONTROL METHOD

For the sake of exemplification, let us start with illustrat-
ing the technique for discrete-time systems. The control pro-
cess consists of two stages. In the first stage, the CF’s pa-
rameter is tuned automatically to the value which produces a
desired PO. In the second stage, the new dynamics created
by the changes in the CF’s parameter is tracked back to the
original one (by slightly changing the CF’s parameter up to
vanishing its value) and therefore the controlled POs are in-
cluded in the set of UPOs embedded within the original cha-
otic attractor. It is important to emphasize that the vanishing
of the control force over the controlled UPOs is an essential
feature of noninvasive control technique, common to both
OGY-based techniques [1] and all DFC-based methods
[3-6].

Let us then consider the following one-dimensional map
with an additional variable:

xn+1=f(~xnaa)+kn’ (1)

kn+1 = gn(xn’kn)’ (2)

where f represents the original system, n is the time index,
X,.k, € R, and a is a control parameter fixed so that the map
(1) would produce a chaotic orbit for k,=0. We assume that
the function f is upward single humped. The function g, is
taken as a modification of the feedback adjustment function
in Ref. [10]. The mechanism of g, is schematically illus-
trated in Fig. 1(a).

Let T and L (the targeting period) be integer parameters.
First, one iterates system (1) with a constant value of &k,
(=ko) until n=T. Then one scans the generated time series
by T-length time intervals. Here, the locking condition is that
the second largest value and the first largest value (denoted
by X) in a T-length scanning time interval be L length away
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FIG. 1. (a) Schematic illustration of the locking process. The
solid map (left) generates the solid time series (right). The dashed
map (left) is the adjusted one, when the locking condition holds. (b)
Time series of x,, when locking control is applied. (c) Correspond-
ing time series of k,,. L=7, T=24, N=20 000, and 7" =20 000.

from each other in that order. When the locking condition
does not hold, the function g, is defined as g,(x,,k,) =k, and
one continues updating x,, Egs. (1) and (2). Once the locking
condition is met, k, is adjusted such that X is equal to the
maximum of f(x,a)+k,.,; ie., the g, is defined as
gn(x,.k,)=%—-x,, where x, represents the approximated
maximum of the function f. x, is derived as the largest value
of the T"-(>T) length time series obtained in advance from
the iterations of Eq. (1) without k,. Here, T’ is a integer
parameter which is determined as an appropriate large value
so as to approximate the maximum well. After the adjust-
ment of k,, one iterates Eq. (1) for the adjusted k, more than
T steps and restarts scanning.

The adjustment is done using the approximated maximum
of the function f(x,a)+k, which is denoted by Ah(k), where k
is an adjustable parameter and h(k)=x,+ ek, with e=1. No-
tice that the value of € is independent of the function f, and
therefore, the method is applicable to generic single-humped
maps f. We repeat the locking procedure until n=N for initial
conditions x, and k.

To illustrate that the locking process can work appropri-
ately so as to obtain period-L periodic orbits, we show nu-
merical simulations in the case of the logistic map f(x,a)
=ax(1-x),a=4. Figures 1(b) and 1(c) show the time series
x, and k,,, respectively, when the locking is applied with L
=7.

Table I shows the numbers of POs, whose period is re-
lated to the value of L, with respect to 5 sorts of L and 128
initial values of x,. The initial values are chosen in [0,0.5]
and ky=0. Here we consider the period of POs to be L when
the period is L or a multiple of L. The period is determined to
an accuracy of 277 with negativity of the Lyapunov expo-
nents. The values of T in Table I are determined such that the
number of period-L POs becomes maximum in 7<<30. The
lowest row of the table shows the numbers of period-L POs
obtained by the original method [10] when T=20.

The adjustment action towards periodic windows in the
CF’s parameter space is similar to the original method in
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TABLE I. Number of POs whose period is L with respect to 128
initial values of x(. The lowest row shows the number of period-L
POs obtained by the original method [10]—i.e., without locking
when 7=20. N=20 000, and 7" =20 000.

L 2 3 5 7 11
T 3 8 16 23 17
Number of POs 109 119 71 56 5

Number of POs (original) 107 49 25 1 0

Ref. [10]. In the original method, locally stable attractors of
the dynamics for k, exist in periodic windows and k, is
changing its value until trapped in a periodic window and
converging to the attractors.

Moreover, the locking condition limits the adjustment ac-
tion. Once the orbit is trapped in a periodic window (the
period is less than T), the order pattern of the time series in
every T-length scanning interval is also changing periodi-
cally. Hence, the adjustment action is going to be terminated
in the trapping periodic window, especially where the period
of the window is L. The period of the obtained PO is nL,
where n is a positive integer satisfying the condition nL
<T.

More precisely, if 1 <n, then the obtained POs correspond
to the locally stable attractors encountered in the original
method. In this case, k, converges to such attractors. On the
other hand, if n=1, then the locking condition terminates the
adjustment action completely and thus k,, stops changing its
value not exactly at the attractors. This is because the largest
and second largest values (L length apart) have coalesced.

The trapping processes of a period-L periodic window are
illustrated in Fig. 2. The shaded (green) part represents the
regions where the second largest points can exist when the
locking condition holds. The upper bound of the shaded re-
gions corresponds to period-L UPOs. As shown in Figs. 2(a)
and 2(c), the largest and second largest points move along
the period-L UPOs. Therefore, the period of the trapping
periodic window is L. In Fig. 2(b), the locally stable attractor
for k, is shown as the intersection between the dash-dotted
line [x=h(k)] and the largest points of POs in the periodic
window.

It should be noted that the period of the trapping periodic
windows is not necessarily related to L, since an infinite
number of periodic windows exist and it would happen that
the k,, is trapped by non-L periodic windows. Additionally, if
the value of k, goes beyond a critical value, then a boundary
crisis occurs. To avoid this, some return process of the excess
of k, to 0 has been discussed [10]. However, for simplicity,
we do not consider here such an occurrence of the crisis.

Let us next apply the method to continuous-time systems,
such as the Rossler model [13] and the three-dimensional
Belouzov-Zhabotinsky (BZ) reaction model [14]. As these
systems are highly dissipative, the attractors are stretched in
one direction on the Poincaré surface of section, and hence
they may be reduced to one-dimensional maps. Thus, we add
an impulsive control feedback only to the one system vari-
able on the Poincaré surface of section. Here, the strength of
the feedback corresponds to k,, in discrete-time systems. It
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FIG. 2. (Color online) Adjustment processes in the bifurcation
diagram with respect to k. The green (shaded) parts represent the
regions where the second largest points can exist when the locking
condition holds. The X and + denote the largest and second largest
values (L length apart) for each k,,. (a), (b) The case that the period
of the obtained PO is 2L. (b) The enlargement around the trapping
periodic window in (a). The dash-dotted line shows x=h(k). (c), (d)
The case that the period is L. (d) The enlargement around the trap-
ping periodic window in (c). L=5, T=16, N=20000, and T’
=20 000.

should be noticed that, in the case of the Rossler model and
the BZ reaction model, the minima of the reduced return
maps are focused, since the reduced return maps are down-
ward single humped. Hence, in this case, (k) corresponds to
the approximated minimum of the function f(-)+k.

A technical remark for the proportionality factor € in h(k)
is in order when we apply the method to continuous-time
systems. While e=1 holds in the case of discrete-time sys-
tems, € is not necessarily 1 in the case of continuous-time
systems. This may be because, although we add the impul-
sive feedback control signal k, only to one of three system
variables, the attractors on the Poincaré surface of section are
not completely parallel to the direction of the one controlled
variable. The Poincaré surface of section is selected with
respect to the minima of the x variable in the Rossler model
[13] and minima of the v variable in the BZ reaction model
[14]. Here, we approximate the minimum of the reduced re-
turn map (k,=0) by the smallest value of the 7’-length time
series. The slopes of i(k), which should correspond to €, are
estimated to be about 1 and 1.87 for the Rossler model and
the BZ reaction model, respectively.

Figures 3(a) and 3(b) show the result when the locking
method with L=6 is applied to the Rossler model by means
of the reduced one-dimensional map. Figure 3(a) shows the
time series of x, and k,. Figure 3(b) shows the controlled
period-6 orbit. Figures 3(c) and 3(d) show the application to
the BZ reaction model with L=5. The controlled period-5
orbit is shown in Fig. 3(d).

III. TRACKING METHOD

As shown in Figs. 3(b) and 3(d), due to the impulsive
nature of the feedback considered in the present case, the
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FIG. 3. (a) Time series of k, (inset: time series of x,) for the
Rossler model. (b) Controlled period-6 orbit. L=6, T=19, N
=10000, 7" =10 000, ky=0, and e=1. (c) Time series of k, (inset:
time series of x,,) in the BZ reaction model. (d) Controlled period-5
orbit. L=5, T=15, N=5000, 7' =10 000, ky=0, and e=1.87.

controlled POs have discontinuities at the Poincaré surface
of sections. Thus, the discontinuous periodic orbits are dif-
ferent from the UPOs embedded within the original chaotic
attractor.

To trace back the controlled POs to the original UPOs, an
additional step has to be introduced, consisting of a tracking
method of periodic orbits that changes the value of ky
(=K) slightly in the direction of making it vanish. To save
energy consumption for the whole control process, the trac-
ing back of the POs should be necessary with causing the
additional parameter K to vanish and recovering the original
dynamics.

Let the pre-image of the controlled period-L POs in the
reduced one-dimensional map be described as the solution of
the following equation:

F(x,K) = F**''(x,K), (3)

where F(x,k)=f(x,a)+k, and here f represents the reduced
maps (k,=0) and hence is downward humped. Let us con-
sider the smallest point of the controlled PO. The pre-image
of the smallest point is closest to the critical point in the
periodic orbit, which is denoted by X,,.

We track the pre-image by the following procedure (see
Fig. 4). First, we change the value of K to K’ by AK. If |AK]|

F L+](x)

F(x)

X;§2) Xp’ X[gl) X.

FIG. 4. Schematic illustration for control from X, to X' in the
case of a downward-humped map and X, >X It X(l >X then
AX,<0. If X,”' <X, then AX,>0.
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is sufficiently small, the pre-image X [the solution of Eq. (3)
for K'] is close to X, Here, let us describe the solution of
Eq. (3) as the x coordinate of the intersection between the
curves y=F(x,K) and y=F*!(x,K) in the (x,y) plane. Then,
X is the same position in the two curves y=F(x,K') and y
=F*1(x,K’) as is the case of X,,.

In the next step, it is possible to control X, to X]’J in the
following manner. First, we change X, to XP—AXP. The AXP
is determined as AX, =0 sgn(X,-X)[F(X,.K')
—FL”(X[,,K’)], where o is a parameter with 0<o<1. X,
denotes the critical point which is approximated by the pre-
image of x, in the initial 7”-length chaotic orbit. It should be
noticed that application to continuous-time systems needs
further estimation of the location of the critical point X, with
respect to K’ as well as e.

The sign of AX, is determined as illustrated in Fig. 4
which shows the case that X.>X. The value of |F(X,.K")
- F"(X,,K")| is decreasing as X), is approaching X). Thus,
X, is converging to X.

After convergence to Xl’,, we change K’ by AK again and
repeat the procedure controlling to ler until K vanishes. As a
result, the controlled POs converges to the period-L UPOs
embedded within the original chaotic attractor. Note that, as
shown in Fig. 4, the position of X[’, corresponds to a destabi-
lized node, since the periodic orbit first controlled by the
locking adjustment method corresponds to a node appearing
by saddle-node bifurcation.

We introduce the above tracking technique as a simple
example to track UPOs in one-dimentional unimodal maps.
In this technique, the value of AK has to be chosen carefully
not to displace the position of the targeting UPO. We can
also consider another technique [15] for tracking UPOs.

We apply the locking adjustment and the tracking method
to the Rossler model and the BZ reaction model by means of
the reduced one-dimensional map on the Poincaré section.
The tracking processes of F(X,,K') with the partial bifurca-
tion diagrams with respect to the controlled variables on the
Poincaré sections are shown in Figs. 5(a) and 5(d). Figures
5(b), 5(c), 5(e), and 5(f) show the controlled and tracked
UPOs. The discontinuities of the stable POs as shown in Fig.
3 disappear as the values of K vanish.

IV. DISCUSSION AND CONCLUSION

Finally, we discuss the robustness of the method against
additive noise, as this is a crucial point to be assessed in view
of applications to experimental systems. To this purpose, we
apply the method to the Rdossler system with an additional
noise term D&(¢) in the variable x, where D is a amplitude
parameter and &(7) is a white noise process with zero mean
and & correlated in time [(&()&(t'))=8(t—1")].

In Fig. 6 we show an example of the behavior of the
Rossler system with noise when the method is applied.
Namely, Figure 6(a) shows the results by the time series of x,,
and k,,. The controlled and tracked period-3 UPO is shown in
Fig. 6(b). The amplitude of the additional noise D=0.2 is
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FIG. 5. (a), (b), (c) Tracking process of POs for the Rossler
model with the partial bifurcation diagram with respect to x on the
section. (a) The circles show the loci of F (Xl'j,K’). The open and
solid circles represent period-4 and period-5 POs, respectively. The
controlled and tracked UPOs are shown in (b) period-4 (T=10, L
=4, ky=1) and (c) period-5 (T=10, L=5, ky=1). N=7000, T’
=10000, e=1, =0.05, and AK=K/100. (d), (¢), (f) Tracking pro-
cess of POs for the BZ reaction model. (d) The open and solid
circles represent period-4 and period-5 POs, respectively. The
UPOs are shown in (e) period-4 (T=8, L=4) and (f) period-5 (T
=15, L=5). N=5000, T7"=10000, ko=0, €=1.87, ¢=0.005, and
AK=K/50.

about 1% of the signal amplitude. Moreover, we also inves-
tigate the noise resistance of the method with respect to 100
different initial conditions for the same amplitude of noise
and numerically confirm the success of the method in 66
cases.

In conclusion, we presented a robust and reliable method
to control a chaotic orbit into a UPO which has the desired
period. The method does not require any detailed informa-
tion of the controlled system such as system parameters, but
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FIG. 6. Control and tracking process in the Rossler system with
noise. D=0.2. (a) Time series of k, (inset: time series of x,, includ-
ing tracking process). (b) Controlled and tracked period-3 UPO. T
=10, L=3, ky=0, N=2000, 7'=200, e=1, 0=0.05, and AK
=K/100.
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uses automatically adjusting feedback of the additional pa-
rameter. Moreover, the method also uses a tracking technique
by means of the intersections of multiple one-dimensional
return maps. The control has been achieved without refer-
ence states for targeting POs, given only integers which cor-
respond to the periods. The method does not require a recon-
struction of the parametrical variations in the UPOs’ stable
and unstable manifolds, nor pretuning of the principal pa-
rameters, and therefore it provides an appropriate strategy to
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control fast dynamical processes in real time toward desir-
able periodic dynamics.
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